Vibrational Analysis of band system- Deslandres Table

In the energy scale, taking the minimum of the potential energy curve as zero, the vibrational term value E(v) is given by,

$$E(V) = E_V = [v+1/2]v_e - [v+1/2]^2v_ex_e + [v+1/2]^3v_ey_e + \dots cm^{-1}$$

In vibration analysis of the spectrum of a band system, the energy of the v=0 vibrational level is taken zero.

$$E(0) = \frac{1}{2} V_e - \frac{1}{4} V_e X_e + \frac{1}{8} V_e Y_e$$

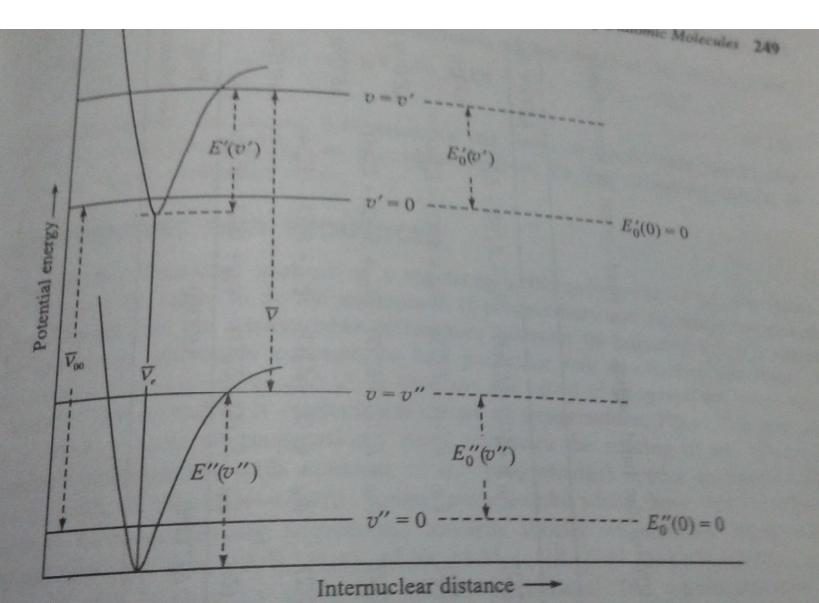


Figure 9.2 Symbols used in the vibrational analysis of a band system.

CONT

- To get information from the observed spectrum the assignment of the values to the band in a band system as to be done first.
- The wave number of each of the band are then arranged in the form of table referred to the deslandres.
- The experimentally observed wave number of each band is entered the wave number separation of two successive vibrational level in an electronic state is given by $E_0(v+1) E_0(v)$ and is called the first difference
- The second difference $\Delta^2 E(v+1)$ defined by

Table 9.1 Arrangements of the wavenumbers [(based on Eq. (9.10)] of the band origins in a band system in terms of their (v'. v'') values

200	0	1	2	3	4	pectro
0 700	$+E_0'(0)-E_0''(0)$	$\overline{V}_{00} + E_0''(0) - E_0'''(1)$	$\vec{v}_{00} + E_0'(0) - E_0''(2)$	$\bar{v}_{00} + E_0'(0) - E_0''(3)$		scops
1 700	$+E_0'(1)-E_0''(0)$	$\overline{V}_{00} + E_0'(1) - E_0''(1)$	$\overline{V}_{00} + E_0'(1) - E_0''(2)$	$\bar{v}_{00} + E'_0(1) - E''_0(3)$	$\overline{V}_{00} + E_0'(1) - E_0''(4)$	7E,(19)
2 V ₀₀ +	$E_0'(2) - E_0''(0)$	$\bar{v}_{00} + E_0'(2) - E_0''(1)$	$\bar{v}_{00} + E_0'(2) - E_0''(2)$	$\bar{v}_{00} + E_0'(2) - E_0''(3)$	$\overline{v}_{00} + E_0'(2) - E_0''(4)$	ΔE, (J/P)
3 V ₀₀ + E	$E_0'(3) - E_0''(0)$	$\bar{v}_{00} + E_0'(3) - E_0''(1)$	$\overline{v}_{00} + E_0'(3) - E_0''(2)$	$\overline{v}_{00} + E_0'(3) - E_0''(3)$	$\bar{v}_{00} + E_0'(3) - E_0''(4)$	ΔΕ'(2½)
$4 \bar{V}_{00} + E_0$	$f'(4) - E_0''(0) = i$	$\bar{t}_{00} \pm E_0'(4) - E_0''(1)$	$\bar{\psi}_{00} + E_0'(4) - E_0''(2)$	$\bar{v}_{00} + E_0'(4) - E_0''(4)$	3) $\bar{v}_{00} + E_0'(4) - E_0''(4)$	ΔE'(3½)
AE" (11 + 15)	ΔE"(%	ΔΕ"	(115) <u>A</u>	E"(23/2) \(\Delta \)	E"(31/2)	First - Difference

cont

If the analysis is correct the second difference for the lower electronic state should also lead to the same value for -2x0 v"0 as that obtained from the first difference similar is the case for the upper electronic state.